Liposomal Encapsulation Delivers Medications More Efficiently

By Jody Leach


Medications and nutritional supplements often target specific organs or systems. The most effective delivery method is by injection or intravenous drip, both of which transfer substances directly into the bloodstream. When taken orally, medications must pass through the upper digestive system, where they may be degraded. Liposomal encapsulation forms a protective barrier that allows more thorough absorption.

Discoveries leading to this process emerged nearly fifty years ago, and have led to the introduction of more controlled methods of administering medications. It is currently important in treating serious medical conditions such as some forms of cancer, treatment-resistant fungal infections, and degenerative vision conditions commonly associated with old age. Standard drug delivery mechanisms still predominate, but encapsulation is proving equally beneficial.

For drugs to survive the upper digestive tract intact, they need to be protected by some kind of barrier that does not cause any additional physical problems. The best solution so far is to create microscopic drug capsules using a material that is already a part of cellular walls throughout the human organism. When activated using one of three primary methods available today, tiny protective liposome bubbles are formed.

They are microscopic, and can easily pass through the stomach into the small intestine where the coating slowly dissolves, allowing the medication to be absorbed. In many cases, this process actually improves the therapeutic impact, and has the additional benefit of producing fewer side effects. Not all types of medicine are adaptable to this delivery system, which is primarily associated with water-soluble substances.

Because the process is not invasive and generates fewer negative reactions, there are immediately and obvious advantages. Liposomes are completely biodegradable, and contain no petroleum-derived compounds or other unwanted toxic substances. They easily survive an onslaught of powerful acid, and later function as mini time-release stations within the small intestine. Powerful cancer drugs administered in this way create less collateral damage to surrounding tissues.

While immediately useful in delivering medication, the process does have drawbacks. The cost of production remains high, but will very likely decrease as research into new product uses expands. There have been issues regarding seal leakage, and common oxidation may also reduce effectiveness. The half-lives of certain drugs decrease using this process, and long-term stability may be shortened. Even so, the potential benefits outweigh known negatives.

The past several years witnessed a transition from mainly medical use to include internal delivery of nutritional supplements and even cosmetic substances. Anecdotal evidence abounds regarding the increased effectiveness of administering both vitamins and minerals in this manner. For years Vitamin C has enjoyed an enviable reputation for fighting upper respiratory viral infections, and encapsulated forms are thought to produce even better results.

Although information highlighting consumer ability to create encapsulated vitamins, minerals, and even herbal extracts is readily available, making high-quality formulations can be costly and involved, and will not effectively combat the normal issues associated with aging. As support and development of this process continues in the medical world, the public will benefit most from it being used in conjunction with health regimens that have already been proven effective.




About the Author:



No comments:

Post a Comment